Diamond machining has emerged as a game-changer in the realm of precision manufacturing. While traditional cutting methods have their limitations, the relentless development of new techniques and equipment has paved the way for CNC machine tools to approach the precision offered by abrasive methods. This article delves into the world of diamond machining, exploring its advantages, techniques, tools used, suitable materials, and real-life applications.
When it comes to CNC machining, the hardness of the cutting tool is a critical parameter. And there is nothing harder than diamond. Artificial diamonds, known for their remarkable hardness, can withstand high temperatures and cutting regimes with ease. Moreover, they offer cost-effectiveness and deliver superior surface finishes that rival those achieved by expensive grinding and polishing machines. By mounting diamonds on simple CNC machine tools and optimizing the technological system for maximum rigidity, exceptional results can be obtained, even when working with the toughest metals. Diamond turning and diamond milling have become popular technologies in the commercial sector due to their ability to deliver outstanding outcomes.
Diamond machining offers a myriad of advantages, making it an attractive choice for various applications:
While many diamond machining methods involve grinding and polishing, two techniques stand out for their cutting-focused implementation with CNC equipment:
Single-Point Diamond Turning (SPDT) closely resembles simple turning but employs a diamond-tipped cutter as the tool. To ensure optimal results, the manufacturing system must exhibit enhanced rigidity. This involves minimizing the lengths between fixtures, using shorter tool supports, and minimizing vibrations. SPDT proves especially useful for manufacturing optical lenses, which often require clear and transparent surfaces.
Single-Point Diamond Milling (SPDM) shares similarities with conventional milling but utilizes a mill with diamond-tipped inserts. When mounted on a 5-axis machining center, this mill becomes the perfect tool for processing complex surfaces made of glass, PMMA, and polycarbonate. Achieving exceptional surface finishes for automotive lamp lenses, light guides, and customized window panes is possible with an extremely fast-revolving diamond mill, controlled cutting feed, and abundant lubrication. Minimizing vibrations is crucial for preserving the quality of the final piece. Some SPDM techniques involve uni-directional machining, ensuring the cutting force always operates in one direction.
A diamond machining tool follows the same structure as any other cutting tool, with the primary difference lying in its insert. The insert comprises a tungsten or carbide base material with a thindiamond film on its tip. This diamond film is exceptionally hard and can last up to 50 times longer than conventional tools. It provides a sharp cutting edge, resulting in precise and clean cuts that yield supreme surface finishes.
Diamond tools are highly versatile and can proficiently process a wide range of materials, including:
From hard and brittle substances to soft and transparent materials, diamond machining offers versatility and exceptional results across a broad spectrum of materials.
It is important to note that diamond tools are not suitable for cutting steel or iron alloys. The reason behind this limitation lies in the presence of carbon atoms in both diamond and steel. During machining, when exposed to high temperatures, carbon atoms in both materials can cause sintering, leading to the tool sticking to the workpiece and rendering both components unusable. It is crucial to choose alternative machining methods when working with steel or iron alloys.
Diamond machining has proven its worth in various real-life applications. Some notable examples include:
These real-life applications showcase the transformative power of diamond machining, enabling manufacturers to achieve exceptional results in terms of surface quality, precision, and complex geometries.
Diamond machining continues to evolve and open new possibilities in precision manufacturing. As technology advances, we can expect further refinements and innovations in diamond machining techniques. The relentless pursuit of precision and surface quality drives the ongoing development of this technique. With its exceptional advantages, versatility, and ability to achieve superior surface finishes, diamond machining has firmly established itself as a shining star in the world of manufacturing. By leveraging diamond tools and employing appropriate machining techniques, manufacturers can unlock new avenues of precision and excellence in their products.